
1 Introduction

Principal Component Analysis (PCA) is a fundamental technique widely used to uncover hidden low-rank
structures from high-dimensional noisy datasets. This is typically achieved by modeling the data through a
low-rank-plus-noise structure, such as the spiked covariance model, and applying PCA to identify the leading
signal components.

However, traditional PCA has notable limitations, particularly under heteroskedasticity noise cases, where
the variance of the noise differs across dimensions. Classical PCA inherently assumes noise has uniform vari-
ance, an assumption that is frequently violated in practical applications. Under heteroskedastic conditions,
the sample covariance matrix becomes significantly biased, particularly on its diagonal, which can dominate
its spectral norm and result in inaccurate subspace recovery.

To address this issue, we turn to Heteroskedastic PCA, which is an iterative, diagonal-debiasing technique
that remains accurate even when noise variances differ across coordinates. By repeatedly zeroing the sample-
covariance diagonal and projecting onto a low-rank (rank ≤ r) positive-semidefinite matrix set, HeteroPCA
recovers the principal subspace with substantially smaller error than classical PCA under heteroskedastic
noise. Beyond its core algorithm and theory, the method has proved adaptable: it extends naturally to
matrices with missing entries and to non-Gaussian settings such as Poisson observations, and subsequent
work has further equipped it with row-wise and entry-wise inferential tools.

2 Bound Comparison for Heteroskedastic PCA and Standard PCA

Bound for Standard PCA Method
We first discuss the upper bound on the angular error between the estimated subspace and the true subspace
using the standard PCA method. Consider the spiked covariance model:

Yk = Xk + εk, Xk ∼ N (0,Σ0), εk ∼ N (0, D)

where D = diag(σ2
1 , . . . , σ

2
p) represents heteroskedastic noise. Classical PCA ignores diagonal bias, which

leads to distorted estimates of eigenvalues and eigenvectors.
According to the Davis–Kahan sinΘ theorem, let the true covariance matrix Σ admit the eigendecomposition:

Σ = UΛU⊤ + U⊥Λ⊥(U⊥)⊤

and let Σ̂ be the perturbed version. Define the eigengap as δ = λr(Λ) − λr+1(Λ). Then the angular error
satisfies:

∥ sinΘ(Ũ , U)∥ ≤ ∥Σ̂− Σ∥
δ

In our setting, set Σ = Σ0 + βIp. Then the bound becomes:

∥ sinΘ(Ũ , U)∥ ≲
∥Σ̂− (Σ0 + βIp)∥

λr(Λ)
∧ 1

Here, λr(Λ) denotes the smallest non-zero eigenvalue of the low-rank signal component Σ0, which dominates
the eigengap. Σ0 trailing eigenvalues are all zero:

λ1(Λ) ≥ · · · ≥ λr(Λ) > 0, λr+1(Λ) = · · · = λp(Λ) = 0

Therefore, the eigengap is δ = λr(Λ)− 0 = λr(Λ)
Also the use of ∧1 ensures that the bound does not exceed 1.
Bound for Hetero PCA Method
We now force on the upper bound on the angular error between the estimated subspace and the true subspace
using the Hetero PCA method. There are three steps in total:
Step 1: Upper bounding the numerator
Our goal is to bound the deviation between the noisy and clean sample covariance matrices:∥∥∥Σ̂− Σ̂X

∥∥∥ =

∥∥∥∥ 1

n− 1
(Y Y ⊤ − nȲ Ȳ ⊤)− 1

n− 1
(XX⊤ − nX̄X̄⊤)

∥∥∥∥ .
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This is equivalent to bound:

(n− 1)(Σ̂− Σ̂X) = Y Y ⊤ − nȲ Ȳ ⊤ − (XX⊤ − nX̄X̄⊤).

Using the model Y = X + E, we expand:

(n− 1)(Σ̂− Σ̂X) = XE⊤ + EX⊤ + EE⊤ − n(X̄Ē⊤ + ĒX̄⊤ + ĒĒ⊤).

Applying heteroskedastic matrix concentration inequalities [2] also applying Theorem 6 and Lemma 1 [3],
we can control the leading error terms and obtain:

EE

∥∥∆((n− 1)(Σ̂− Σ̂X)
)∥∥ ≲

√
nσsumσmax + σ2

sum + ∥X∥ (σsum +
√
rσmax) + n1/2∥X̄∥2 σsum.

Step 2: Lower bounding the denominator
We aim to estimate the smallest nonzero eigenvalue of the sample signal covariance matrix Σ̂X to lower
bound λr(nΣ̂X).
Let Γ ∈ Rn×r be a matrix with independent, isotropic sub-Gaussian columns. Based on matrix concentration
theory [4], we have:

P
(√

n+ C
√
r + t ≥ ∥Γ∥ ≥

√
n− C

√
r − t

)
≥ 1− exp(−Ct2/2).

Choosing t =
√
n, we obtain the following with at least 1 − Cexp(cn) probability:

2
√
n ≥ ∥Γ∥ ≥ λr(Γ) ≥

√
n/2, ∥Γ̄∥2 ≤

√
n/3.

Given that X = UΛ1/2Γ⊤, we express the sample covariance matrix as:

nΣ̂X = n(XX⊤ − nX̄X̄⊤),

and its eigenvalue satisfies:

λr(nΣ̂X) ≥ λr(Λ) · λr(ΓΓ
⊤ − nΓ̄Γ̄⊤) ≳ nλr(Λ).

Hence, by applying random matrix theory, we obtain a nontrivial lower bound on the effective signal strength.
Step 3: Estimating subspace error by sinΘ theorem
From robust perturbation theory:

E∥ sinΘ(Û , U)∥ ≲
E∥∆((n− 1)(Σ̂− Σ̂X))∥

λr((n− 1)Σ̂X)

Thus, using the bound from Step 1 and Step 2:

E∥ sinΘ(Û , U)∥ ≲
σsum +

√
rσmax

(nλr(Λ))1/2︸ ︷︷ ︸
noise fluctuation

+
σsumσmax

n1/2λr(Λ)︸ ︷︷ ︸
higher-order terms

Why the Heteroskedastic PCA Bound is Tighter

1. Diagonal bias removal.
Classical PCA keeps the deterministic diagonal bias diag(σ2

1 , . . . , σ
2
p) inside the perturbation norm

∥Σ̂− (Σ0+βIp)∥; HeteroPCA applies the operator ∆(·) that zeroes out all diagonals, so the numerator

becomes
∥∥∆(Σ̂− ΣX)

∥∥ and no longer scales with the largest noise variance σmax.

2. Signal eigenvalue is preserved.
Both bounds divide by a signal strength (eigengap). HeteroPCA shows λr

(
(n − 1)Σ̂X

)
∼ nλr(Λ) in

probability, hence the denominator stays of the same order as in the classical bound.
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3. Fluctuation vs. worst–case.
The new numerator depends on σsum +

√
r σmax (root–sum fluctuation), whereas the classical one is

dominated by the single largest σmax. The resulting leading term is

σsum +
√
r σmax

(nλr(Λ))1/2
,

strictly smaller whenever σsum<pσmax, which is the generic heteroskedastic case.

4. Expectation-level guarantee.
HeteroPCA reports the expected subspace error, reflecting an average–case behaviour; the classical
Davis–Kahan bound is worst–case in operator norm, hence looser in practice.

Consequently, by isolating diagonal bias and focusing on true random fluctuations, the Heteroskedastic PCA
bound delivers a strictly tighter (often order–optimal) guarantee for subspace recovery under heteroskedastic
noise.

3 Key Assumptions and Limiations of the HeteroPCA Algorithm

Entrywise vs. Columnwise Heteroskedasticity
For the heteroskedastic noise model, Zhang et al. give the following expression relating the expectation

of the sample gram matrix N = Y Y ⊺ and the gram matrix of the underlying data matrix M = XX⊺:

ENi,j = Mi,j +

p2∑
k=1

Var(Ei,k)

However, if furhter assume that (∀k ∈ [p2]) Var(Ei,k) = Var(Ej,k) (i.e. variance is equal in a given column).

δ =

p2∑
k=1

Var(Ei,k) =

p2∑
k=1

Var(Ej,k)

EN = M + δI

Since M is symmetric, we can take the diagonal decomposition

M = UΛU⊺

EN = U(Λ + δI)U⊺

Most critically, this very simple proof demonstrates that weakening the assumption of entry-wise het-
eroskedasticity to only column-wise heteroskedasticity guarantees that the eigenvectors of EN (and their
corresponding order by size) are identical to those of M . This is meaningful because this bias is the ini-
tial motivation the paper cites for the insufficiency of both diagonal deletion and traditional SVD for the
hetroskedastic noise problem.

The impact of the distinction between entrywise and columnwise heteroskedasticity is further shown
numerically in the experiments conducted by Hong et al. in ”HePPCAT: Probabilistic PCA for Data
With Heteroscedastic Noise” [9]. This paper focuses on addressing heteroskedasticity across samples, which
correspond to columns in the example above. This means that our above assumption of equal variance in
within each column is an assumption for this paper.

In the experiment, matrices are generated under noise that is heteroskedastic across samples. Then, the
subspaces of these matrices are estimated using weighted PCA (inverse noise variance and square inverse noise
variance), HeteroPCA, and HePPCAT. In this numerical experiment, HeteroPCA was the worst performing
under every metric shown: normalized subspace estimation error and recovery of the first three principle
components. It performed particularly poorly in the recovery of the first two principle components as the
noise variance grew larger. This experiment demonstrates that HePPCAT may offer superior recovery to
HeteroPCA in situations where heteroskedasticity only holds across samples rather than across all entries.
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Impact of the Condition Number on HeteroPCA
One limitation of a few of the bounds given in the HeteroPCA paper is their assumption in an at most

constant condition number. For example, this assumption is made in remark 3, a formula describing the
optimal estimation error rate, Theorem 4, which provides the main bound for the subspace estimation error

for the SVD under heteroskedastic noise problem, and a similar bound placing ||Λ||
λr(Λ) ≤ C for Theorem 1,

which generates the bound demonstrated earlier in this paper.
Specifically, this assumption is invoked in Theorem 1 is used to show:

||X̄||2 ≲ (nλr(Λ))
1/2

This quantity ends up forming the numerator of our noise fluctuation term shown at the conclusion in Step
3 of the first proof in this paper. This shows that this bound on the condition number is very critical to the
final bounds generated.

The problem of HeteroPCA’s dependence on a controlled condition number is further explored in Zhou
et al.’s paper ”Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA” [10].
They begin the paper by demonstrating the insufficiency of HeteroPCA in circumstances where the condition
number grows large by an experiment. By generating random low rank underlying truth matrices and then
applying heteroskedastic nosie to one version but leaving the first entirely without random noise, Zhou et
al. generated the following figures comparing the ℓ2 subspace estimation error across a variety of methods
as κ increases:

Beyond simply showing that larger condition numbers can cause HeteroPCA to underperform on data
with heteroskedastic noise, the left plot demonstrates that a large condition number can actually cause both
diagonal delted PCA and HeteroPCA to perform worse under an increasing condition number even when
the dataset is entirely noiseless. Meanwhile, in the noisy case, both HeteroPCA and diagonal deletion are
outperformed by vanilla SVD once the condition number becomes large enough. These results show that,
beyond simply comprimising the assumptions behind our bounds, large condition numbers can cause the
performance of HeteroPCA to significantly degrade. In order to remedy this shortcoming, the authors of
the paper designed a novel algorithm, called Deflated-HeteroPCA. In short, this algorithm divides a given
matrix, which may have a large condition number, into well conditioned subblocks where HeteroPCA can
be properly applied. This algorithm also achieves the same minimax bounds of the original HeteroPCA
algorithm. Therefore, in cases where a large condition number is a possible concern, Deflated-HeteroPCA
will be much more robust to these matrices than the original algorithm.
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Appendix

A Introduction

Principal Component Analysis (PCA) is a foundational tool in modern data analysis, commonly used for
dimensionality reduction, noise filtering, and feature extraction. Classical PCA assumes homoskedastic noise
and complete data, which are often unrealistic assumptions in high-dimensional settings. Recent work has
focused on modifying PCA to account for heteroskedastic noise—that is, noise with non-uniform variance
across observations—as well as missing or corrupted entries.

While several methods have been proposed to address these limitations, including diagonal-deletion and
de-biasing techniques, they often suffer from instability, reduced accuracy, or lack of theoretical guarantees
under realistic data conditions. One notable contribution, Heteroskedastic PCA: Algorithm, Optimality,
and Applications, introduced a framework for consistent subspace estimation under heteroskedasticity by
modifying the spectral structure of the sample covariance matrix. However, that paper focuses primarily
on estimating the principal subspace and does not provide elementwise uncertainty quantification or robust
procedures for inference on individual matrix entries.

Inference for Heteroskedastic PCA with Missing Data addresses these gaps by proposing a new framework
that not only recovers the underlying low-rank structure in heteroskedastic noise but also quantifies uncer-
tainty at the entrywise level. This is particularly relevant in applications where individual matrix entries
carry scientific or operational significance, such as in recommender systems, genomics, and signal process-
ing. The paper introduces novel estimators and confidence intervals designed to handle noise heterogeneity,
backed by non-asymptotic theoretical guarantees and empirical results demonstrating superior performance
over prior methods.

B Motivation and Problem Setup

Classical PCA, despite its widespread utility, is known to perform poorly when applied to data with het-
eroskedastic noise or missing entries—both of which are common in high-dimensional applications. In such
cases, the empirical covariance matrix becomes a biased and inconsistent estimator of the population covari-
ance, especially in the presence of non-uniform variances across rows or columns.

The paper Heteroskedastic PCA: Algorithm, Optimality, and Applications provides a significant step
forward by proposing a spectral method, HeteroPCA, that consistently estimates the principal components
under heteroskedastic noise. Although missing data is not an explicit focus of the paper, HeteroPCA is able
to implicitly handle missing entries through its iterative structure. Specifically, each iteration of HeteroPCA
performs a best rank-r approximation via singular value decomposition (SVD), which functions as a matrix
completion step. This enables the algorithm to refine the low-rank approximation of the signal matrix while
filling in unobserved entries without requiring explicit imputation.

However, while HeteroPCA recovers the principal subspace effectively, it does not provide elementwise
statistical inference, such as confidence intervals for individual entries of the signal matrix. In many real-
world applications—including recommender systems, genomics, and spatio-temporal signal analysis—it is
crucial not only to estimate a low-rank signal matrix but also to quantify uncertainty on a per-entry basis,
especially when decisions or predictions are made at the individual level.

Inference for Heteroskedastic PCA with Missing Data is motivated by this need for robust and fine-grained
inference under practical noise and sampling constraints. The paper considers the model

Y = X + E,

where X is an unknown low-rank signal matrix and E is a noise matrix with independent, mean-zero,
heteroskedastic entries. Critically, only a subset of the entries of Y is observed. The goal is to estimate
entries of X and construct entrywise confidence intervals, while accounting for both missing data and noise
variability.

This formulation captures a wide range of high-dimensional problems where data is incomplete and
noisy. The key challenge is to disentangle the heteroskedastic noise structure from the low-rank signal and
the randomness induced by missingness, in order to enable statistically valid inference at the entry level.
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C Summary of Contributions

Inference for Heteroskedastic PCA with Missing Data makes several key contributions to the study of low-
rank matrix estimation under realistic noise and sampling conditions:

• Entrywise Inference Framework: The paper introduces a principled framework for constructing
entrywise confidence intervals for the elements of a low-rank matrix corrupted by heteroskedastic noise
and partially observed data. This addresses a major gap in prior work, including Heteroskedastic PCA:
Algorithm, Optimality, and Applications, which focuses on subspace recovery rather than inference on
individual entries.

• Theoretical Guarantees: The paper provides non-asymptotic theoretical guarantees for the pro-
posed confidence intervals. These results hold under a random missingness model and do not require
uniform noise assumptions, making them broadly applicable.

• Empirical Validation: Through simulations and real-data experiments, the authors demonstrate
that their method outperforms previous approaches in terms of coverage accuracy and robustness
under noise heterogeneity. The results highlight both the practical utility and theoretical soundness of
the method.

Taken together, these contributions provide a substantial advancement in the development of statistically
valid, entrywise inference tools for heteroskedastic and incomplete data settings. The work bridges a critical
gap between low-rank matrix recovery and uncertainty quantification.

D Technical Framework

D.1 Model and Assumptions

The paper considers the standard matrix denoising model with heteroskedastic and incomplete observations:

Y = X + E,

where Y ∈ Rd×n is the observed data matrix, X ∈ Rd×n is the unknown low-rank signal matrix of interest,
and E ∈ Rd×n is a noise matrix with independent, mean-zero entries. The matrix X is assumed to have
rank r ≪ min(d, n).

A key feature of this model is the heteroskedasticity of the noise: the entries of E are assumed to satisfy

E[Eij ] = 0, E[E2
ij ] = ω2

ij ,

where the variances ω2
ij may vary arbitrarily across i and j, subject to mild moment conditions. This

contrasts with homoskedastic models, where the noise variance is constant across entries.
In addition to noise heterogeneity, the paper assumes that only a random subset of the entries of Y is

observed. Let Ω ⊂ [d]× [n] denote the set of observed indices. The sampling process is modeled as uniform
random sampling, where each entry is observed independently with probability p. Define the sampling mask
1(i,j)∈Ω, and denote the observed data matrix as

Ỹij =

{
Yij , if (i, j) ∈ Ω,

unobserved, otherwise.

The goal is to estimate the underlying signal matrix X and construct valid confidence intervals for each
entry Xij using only the partially observed, heteroskedastic data. This requires carefully disentangling the
effects of noise and missingness, while leveraging the assumed low-rank structure of X.
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D.2 Proposed Algorithm 1

The paper introduces a procedure to construct confidence regions for the latent row factors U⋆
l,· of the low-

rank signal matrix X = U⋆Σ⋆V ⋆⊤, where the goal is to quantify the uncertainty in estimating each row of
the left singular vector matrix U⋆. The algorithm assumes as input the output of a low-rank approximation
(from Hetero PCA Algorithm), specifically the estimated matrices (U,Σ, S), the sampling rate p, and the
desired coverage level 1− α. The steps are summarized below.

Step 1: Estimate noise levels. For each row l = 1, . . . , d, the noise variance ω̂2
l is estimated from the

observed entries in that row:

ω̂2
l =

∑n
j=1 y

2
l,j 1(l,j)∈Ω∑n

j=1 1(l,j)∈Ω
− Sl,l.

Here, Sl,l is the l-th diagonal entry of the matrix S, which captures the estimated contribution of the signal
matrix in row l. It is computed based on the output of the low-rank approximation in Hetero PCA Algorithm.
This subtraction isolates the noise variance by removing the estimated signal component from the observed
energy in each row.

Step 2: Estimate covariance of row factor. The algorithm constructs a covariance estimate Σ̂U,l for
the vector U⋆

l,·, which incorporates both the noise estimate and the sampling variability:

Σ̂U,l =
(

1−p
np ∥Ul,·Σ∥22 +

ω̂2
l

np

)
Σ−2 + 2(1−p)

np U⊤
l,·Ul,· +Σ−2U⊤ diag({dl,i})U Σ−2,

where the diagonal elements {dl,i}di=1 are defined as

dl,i =
1

np2

[
ω̂2
l + (1− p)∥Ul,·Σ∥22

] [
ω2
i + (1− p)∥Ui,·Σ∥22

]
+ 2(1−p)2

np2 S2
l,i.

This step captures higher-order variance contributions due to the interaction of heteroskedastic noise and
subsampling, using a plug-in approach based on the current estimates.

Step 3: Construct confidence region. Let τ1−α denote the (1 − α)-quantile of the chi-squared distri-
bution with r degrees of freedom, i.e.,

B1−α = { z ∈ Rr : ∥z∥22 ≤ τ1−α }.

Then, the confidence region for U⋆
l,· is given by

CR1−α
U,l = Ul,· +

(
Σ̂U,l

)1/2
B1−α.

This defines an ellipsoidal region in Rr centered at the estimated row vector Ul,·, with shape determined by
the estimated covariance.

Interpretation. This algorithm provides high-probability confidence sets for each row factor U⋆
l,·, ac-

counting for both heteroskedasticity and missingness. The construction relies on variance decomposition
that captures signal strength, noise level, and subsampling effects, and the result is a data-driven region in
which the true row vector lies with probability at least 1− α, under mild conditions.

D.3 Theoretical Guarantees for Algorithm 1

The reliability of the proposed inference method is established through two main results: Theorem 1 and
Theorem 2. These theorems provide a row-wise Gaussian approximation for the subspace estimator returned
by Algorithm 2, and validate the coverage accuracy of the constructed confidence regions.
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Theorem 1. Assume that each column of the ground truth matrix X is independently generated from
N (0, S⋆), and that the sampling set Ω follows the random sampling model described in Section 1.1. Let
p < 1 − δ for some constant 0 < δ < 1, or p = 1, and assume κ, µ, r, κω ≍ 1. Suppose that Assumption 1
holds, d ≳ log5 n, and the sample size and noise satisfy:

ω2
max

pσ⋆
r
2

√
d

n
≲

1

log7/2(n+ d)
,

ωmax

σ⋆
r

√
d

np
≲

1

log3(n+ d)
,

ndp2 ≳ log9(n+ d), np ≳ log7(n+ d),

and that the number of iterations t0 satisfies:

t0 ≳ log

( log2(n+ d)√
ndp

+
ω2
max

pσ⋆
r
2

√
d

n
log(n+ d) +

log(n+ d)
√
np

+
ωmax

σ⋆
r

√
d log(n+ d)

np

)−1
 .

Let R = sgn(U⊤U⋆) be the r × r rotation matrix aligning the estimated subspace with the true one.
Then the estimate U returned by Algorithm 2 satisfies:

sup
C∈Cr

∣∣P ([UR− U⋆]l,· ∈ C)− P
(
N (0,Σ⋆

U,l) ∈ C
)∣∣ = o(1), for all 1 ≤ l ≤ d.

Interpretation and Importance: Theorem 1 shows that each row of the estimated subspace U , after
alignment, admits a nearly tight Gaussian approximation with a closed-form covariance matrix Σ⋆

U,l. This
result provides the theoretical basis for constructing confidence regions around each estimated subspace row.

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then there exists a rotation matrix R =
sgn(U⊤U⋆) such that the confidence regions CR1−α

U,l , for 1 ≤ l ≤ d, computed in Algorithm 3, satisfy:

sup
1≤l≤d

∣∣∣P(U⋆
l,·R

⊤ ∈ CR1−α
U,l

)
− (1− α)

∣∣∣ = o(1).

Interpretation and Importance: Theorem 2 ensures that the confidence regions constructed from the
plug-in estimator of Σ⋆

U,l achieve asymptotically valid coverage uniformly across all rows. This confirms
that the procedure not only estimates subspace directions but also provides statistically valid uncertainty
quantification in high-dimensional, heteroskedastic, and incomplete data settings.

D.4 Proposed Algorithm 2

The paper introduces a second algorithm to construct entrywise confidence intervals for the elements of the
signal covariance matrix S⋆. The procedure uses the output of HeteroPCA, which provides an estimate S
of S⋆, and estimates the variance of each entry to construct confidence intervals.

Inputs: The algorithm takes as input the estimated low-rank factors (U,Σ, S) from Hetero PCA Algorithm,
the sampling rate p, and the desired confidence level 1− α.

Step 1: Estimate noise levels. For each row l, estimate the noise variance using:

ω2
l :=

∑n
j=1 y

2
l,j · 1(l,j)∈Ω∑n

j=1 1(l,j)∈Ω
− Sl,l.
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Step 2: Estimate entrywise variances. For each entry (i, j), a variance estimator v⋆i,j is constructed
using the plug-in formula derived in the paper:

- For off-diagonal terms (i ̸= j), the variance is estimated by:

v⋆i,j :=
2− p

np
S⋆
i,iS

⋆
j,j +

4− 3p

np
(S⋆

i,j)
2 +

1

np
(ω⋆2

i S⋆
j,j + ω⋆2

j S⋆
i,i)

+
1

np2

d∑
k=1

[ω⋆2
i + (1− p)S⋆

i,i][ω
⋆2
k + (1− p)S⋆

k,k]

+
1

np2

d∑
k=1

[ω⋆2
j + (1− p)S⋆

j,j ][ω
⋆2
k + (1− p)S⋆

k,k]

+ 2(1− p)2
d∑

k=1

(S⋆
i,k)

2(U⋆
k · U⋆

j )
2 + (S⋆

j,k)
2(U⋆

k · U⋆
i )

2.

- For diagonal terms (i = j), the variance becomes:

v⋆i,i :=
12− 9p

np
(S⋆

i,i)
2 +

4

np
ω⋆2
i S⋆

i,i

+
4

np2

d∑
k=1

[ω⋆2
i + (1− p)S⋆

i,i][ω
⋆2
k + (1− p)S⋆

k,k]

+ 2(1− p)2
d∑

k=1

(S⋆
i,k)

2(U⋆
k · U⋆

i )
2.

Step 3: Construct confidence intervals. Finally, output the confidence interval:

CI1−α
i,j =

[
Si,j ± Φ−1(1− α/2) · √vi,j

]
,

where Φ−1(·) is the inverse CDF of the standard Gaussian distribution.
This procedure enables inference for each entry S⋆

i,j , incorporating estimated heteroskedastic noise and
subsampling uncertainty in a fully data-driven way.

D.5 Theoretical Guarantees for Algorithm 2

The theoretical validity of the confidence intervals constructed in Algorithm 2 is grounded in Theorem 3 and
Theorem 4 of the paper.

Theorem 3. Suppose that p < 1−δ for some arbitrary constant 0 < δ < 1 or p = 1, and that κ, µ, r, κω ≍ 1.
Assume that U⋆ is µ-incoherent and satisfies:

∥U⋆
i,·∥2 + ∥U⋆

j,·∥2 ≳

ωmax

σ⋆
r

√
d log5(n+ d)

np
+

ω2
max

pσ⋆2
r

√
d log5(n+ d)

n
+

√
log7(n+ d)

ndp2

 · 1√
d
.

Also assume:
d ≳ log5 n, np ≳ log7(n+ d), ndp2 ≳ log7(n+ d),

ωmax

σ⋆
r

√
d

np
≲

1

log3(n+ d)
,

ω2
max

pσ⋆2
r

√
d

n
≲

1

log7/2(n+ d)
,

and that the number of iterations satisfies the lower bound in equation (3.6). Then, for any entry (i, j), the
matrix S computed by Algorithm 2 satisfies:

sup
t∈R

∣∣∣∣∣P
(
Si,j − S⋆

i,j√
v⋆i,j

≤ t

)
− Φ(t)

∣∣∣∣∣ = o(1),
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where Φ(t) denotes the CDF of the standard Gaussian distribution.
Interpretation: This result shows that the estimation error for each entry Si,j is asymptotically normal,

centered at zero, with variance v⋆i,j . This is the key technical result that justifies using Gaussian quantiles
in the construction of entrywise confidence intervals.

Theorem 4. Suppose the conditions in Theorem 3 hold. Assume that ndp2 ≳ log8(n + d). Then the
confidence interval computed in Algorithm 4 satisfies:

P
(
S⋆
i,j ∈ CI1−α

i,j

)
= 1− α+ o(1).

Interpretation: Theorem 4 confirms the validity of the confidence intervals produced by Algorithm 4.
Despite the presence of heteroskedastic noise and missing data, the constructed intervals for each entry of
S⋆ attain the nominal coverage level 1− α asymptotically.

E Empirical Results

To validate the proposed inference framework, the authors conduct a comprehensive set of Monte Carlo
simulations. These experiments test both the estimation accuracy and inferential validity of the algorithms
introduced in the paper under a controlled heteroskedastic and partially observed setting.

Setup. The simulations fix the dimension d = 100 and the number of samples n = 2000. The true
covariance matrix is generated as S⋆ = U⋆U⋆⊤, where U⋆ ∈ Rn×r is drawn uniformly from the Haar
distribution on the Grassmann manifold. To model heteroskedasticity, the noise variance ω⋆2

l for each row l
is sampled independently from Uniform[0.1ω⋆, 2ω⋆], and noise entries ηl,j are then drawn from N (0, ω⋆2

l ).

Subspace and Covariance Estimation Accuracy. The authors compare HeteroPCA against both
SVD-based PCA and diagonal-deletion PCA. Results are evaluated using various relative error metrics, such
as:

∥UR− U⋆∥
∥U⋆∥

,
∥S − S⋆∥
∥S⋆∥

.

Figure 1: Relative estimation errors of U and S under varying noise levels ω⋆, comparing HeteroPCA and
SVD-based PCA.

Figure 1 shows that HeteroPCA uniformly outperforms the SVD-based estimator across all error metrics
as noise level ω⋆ increases (with r = 3 and p = 0.6). Figure 2 confirms this superiority across different missing
probabilities p, highlighting the robustness of HeteroPCA to both noise heterogeneity and missingness.
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Figure 2: Relative estimation errors of U and S under varying sampling rates p, showing the performance
of HeteroPCA vs. SVD-based PCA.

In comparison with diagonal-deletion PCA, HeteroPCA also achieves substantially better performance,
particularly when the signal strength is not too low. These results support the efficacy of the iterative
spectral correction used in HeteroPCA.
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